

Supervisory Control for a Novel Captioner-Al System

Hemanshu Bhargav

Agenda

- Introduction
- Methods
- **Results & Discussion**
- Conclusion •

Introduction

Motivation

- Closed Captions (CC) required for the equitable participation of Deaf and Hard-of-Hearing (D/HoH) individuals consuming media
 - Verbatim transcriptions produced by human captioners
 - Can be post-production or live (focus of this thesis)
- Tradeoffs in speed, accuracy and delay in human production
 - Live broadcasts often have speaking rates of 220+ WPM (Fresno et al., 2020)
 - Human caption production 95% accurate at 133 WPM (Ruiz-Arroyo et al., 2022)
 - Delay of 3-10 seconds (Seeber, 2011)
- Captioning is mentally and physically demanding (Nam et al., 2023)

Figure 1: Live CC

Thesis Focus

imdc

- Artificial Intelligence (AI) is a form of automation (Veitch & Andreas Alsos, 2022)
- Automatic Speech Recognition (ASR) is replacing human captioners in online meetings and video content
 - Delay of 1-5 seconds (AWS, 2024; Google Cloud, 2024; Otter.ai, 2023)
 - Solves speed but still makes mistakes
- Propositions for thesis
 - Al is the typist and NOT a replacement
 - Captioner promoted to supervisor
- Combine efficiency of AI and judgement of human captioners

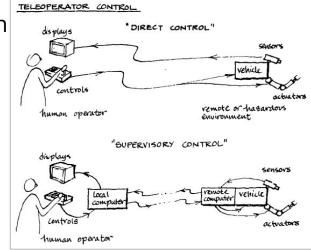


Figure 2: Operator Promoted to Supervisor Source: Adapted from Sheridan & Verplank, 1978

Levels of Automation

imdc /

INCLUSIVE MEDIA & DESIGN CENTRE

	Level of automation	Monitoring	Generating	Selecting	Implementing	
Level 1	Manual control	Human	Human	Human	Human	
Level 2	Action support	Human/Computer	Human	Human	Human/Computer	
Level 3	Batch processing	Human/Computer	Human	Human	Computer	
Level 4	Shared control	Human/Computer	Human/Computer	Human	Human/Computer	
Level 5	Decision support	Human/Computer	Human/Computer	Human	Computer	
Level 6	Blended decision-making	Human/Computer	Human/Computer		Computer	
Level 7	Rigid system	Human/Computer	Computer		Computer	
Level 8	Automated decision-making	Human/Computer	Human/Computer	Computer	Computer	
Level 9	Supervisory control	Human/Computer	Computer	Computer	Computer	
Level 10	Full Automation	Computer	Computer	Computer	Computer	

Figure 3: LOA. Source: Adapted from https://www.functionize.com/blog/levels-of-automation-in-testing

PAVOCAT — Supervisory Control Based Captioning

imdc

INCLUSIVE MEDIA & DESIGN CENTRE

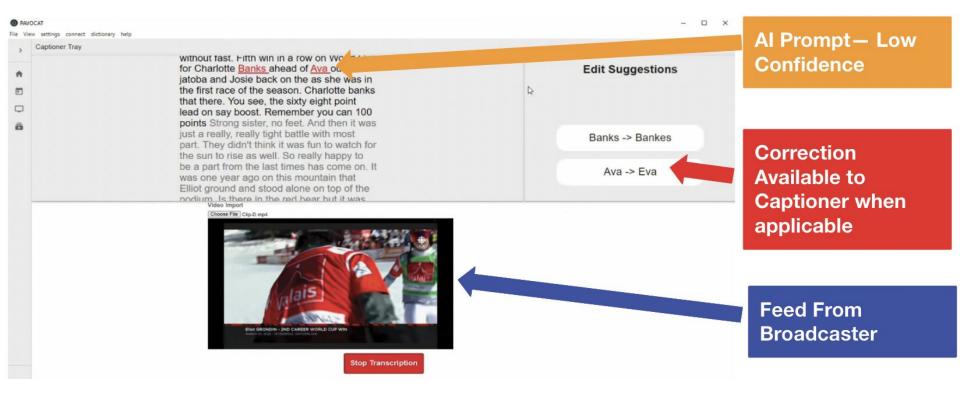


Figure 4: PAVOCAT Interface

Research Questions

1. How do novice and expert captioners work with a novel ASR-based

captioning tool, PAVOCAT, when working in "captioner as

overseer" mode?

imdc

2. What is the experience of captioners working with PAVOCAT?

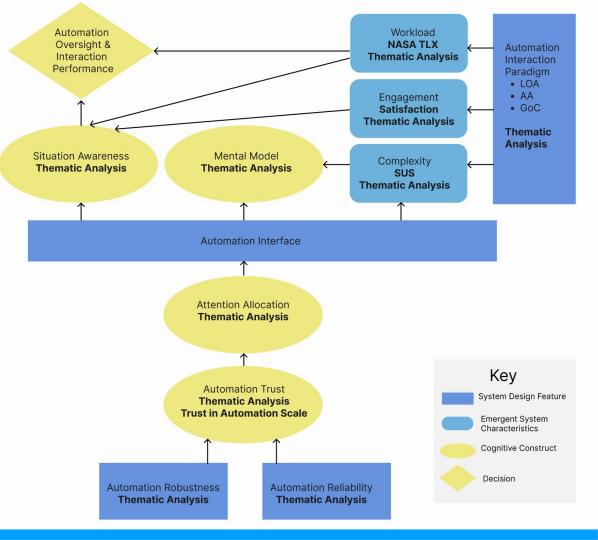
Methodology

Data Collection

- Time-series study with 10 novice (M = 9, F = 1) & 11 experienced captioners (M = 6, F = 5)
 - 10-minute snowboarding clips (~180 WPM)
 - 3 sessions (repeated measures) analyzed using non-parametric statistics
- Pre-study, between-study and post-study measurement
- Between-Study questionnaires (after each of the 3 sessions)
 - NASA TLX Workload (Hart & Staveland, 1988)
 - Trust in Automation Scale (Jian et al., 2000)
 - System Usability Scale (Brooke, 1995)
 - Satisfaction Scale (Nielsen, 2012b)

Data Collection Continued

- 30 minute semi-structured interview
- Analyzed using Thematic Analysis


- Also included any comments made before/after captioning sessions
- Existing workflow, Attention, changes to Workload, etc.
- Trust, Complexity and Engagement, comparison with other software
- Future of the role and overriding Edit Suggestions

Human Autonomy System Oversight (HASO) Model

INCLUSIVE MEDIA & DESIGN CENTRE

imdc /

Figure 5: HASO Model w/ Measurements Source: Adapted from Endsley, 2017, p. 9 *Note.* Measurement tools are in bold.

Themes Table

INCLUSIVE MEDIA & DESIGN CENTRE

Theme	Modifier
1. Performance and Expectations	Positive
	Negative
2. Physical and Mental Workload	Positive
	Neutral/No Change
	Negative
3. Willingness to use Al	Positive
	Neutral/No Change
	Negative
4. Human Al Interaction	Override Edit Suggestions
	Override Typing
5. Comparison with Other Explicitly Named	
AI/ASR Software	
6. Other (Technical, Content etc.)	
7. User Interface Modifications	

Results & Discussion

Thematic Analysis Results

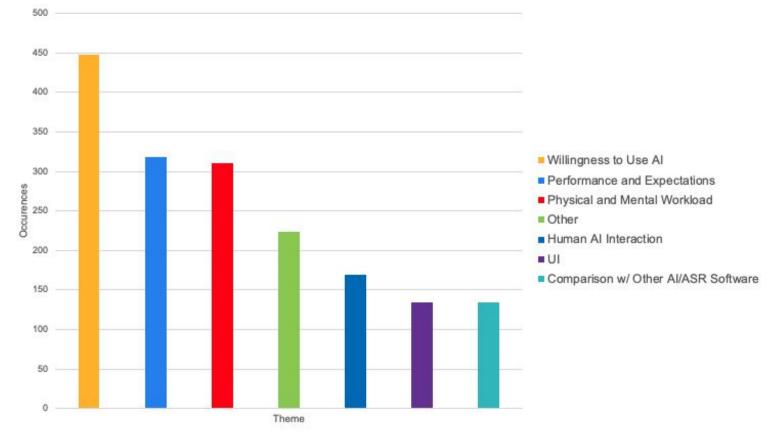
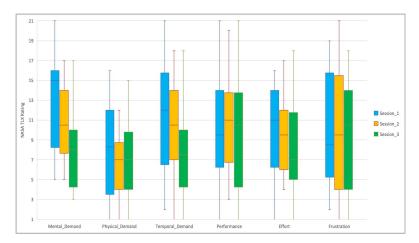
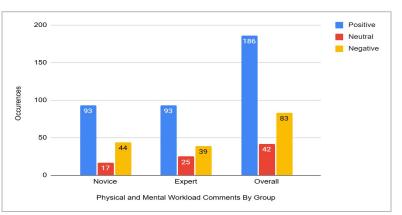



Figure 6: Thematic Analysis Results


Workload

imdc

- NASA TLX Overall Medians (/126): Session 1 = 64.5, Session 2 = 54.0 and Session 3 = 47.0
 - Previous related research: NASA TLX workload of captioners 79.3 (SD = 30.3) (Nam et al., 2023)
- Mental Demand reduced from 15 to 8 (/21)
 - Significant difference between Session 1 and Session 3
- 60% (186/311) of all Workload-related comments were positive
 - "Live captioning with this AI is very easy and I feel very relaxed" (Expert)
- Al assisted captioning was less mentally demanding than human captioning

Figure 7: NASA TLX Workload Results

Figure 8: Workload Thematic Results

Automation Robustness and Reliability

- 42% (133/318) comments positive and 58% (185/318) comments negative
 - "At this point, it's not usable" (Expert)

imdc

- Significant correlations with Workload
 - $\circ \quad \mbox{Positive Robustness and Reliability and positive} \\ \mbox{Workload} (\tau(21) = 0.55, \, p < 0.05) \mbox{ and negative} \\ \mbox{Workload} (\tau(21) = -0.43, \, p < 0.05) \mbox{}$
 - Negative Robustness and Reliability and negative Workload ($\tau(21) = 0.43$, p < 0.05)
- Significant correlation with Trust
 - Positive Performance and negative Trust ($\tau(21) = -0.48$, p < 0.05)

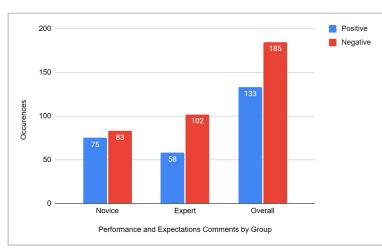


Figure 9: Automation Robustness and Reliability Thematic Results

Relationship b/w Workload and Robustness and Reliability

- Server interruptions possibly reduced Situation Awareness (SA)
 - Unexpected outputs reduce SA (Endsley, 1999, 2000; Endsley, 1995; Endsley & Kiris, 1995)
- Automation Brittleness at least two server shutdowns per 10-minute session
- Lower workload can be related to complacency because the supervisor is idle for periods of time (Clark et al., 2019; Endsley, 2017)
- Participants did not quit the task indicating none fell Out-of-The-Loop (OOTL)
 - Maintained perception of the task

- Two participants did demonstrate ability to project how their role may adapt in the future with improvements in Al
 - "Maybe my role shifts to like I can monitor several jobs at a time" (Expert)
 - "Or helping the AI know how to weight them differently" (Expert)

Automation Trust

- Trust in Automation Scale overall median rating decreased over time: 4.30 (SD=1.27) to 3.68 (SD=1.07) out of 7
 - Suggests novelty effect of software
- 71% (318/447) comments positive
 - Scale confusing to participants
 - Many items left unanswered
- Participants approve "Captioner-as-Supervisor" workflow
 - No difference b/w novices and experts
- Correlation b/w Trust and Workload ($\tau = 0.48$, p < 0.05)
- Trust affects Workload

imdc

• "We can't really trust AI, so we should have the ability to edit [the captions]" (Novice)

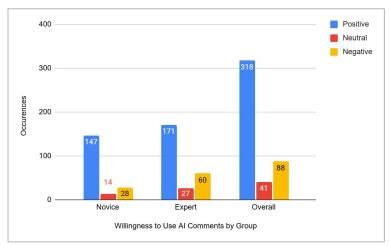
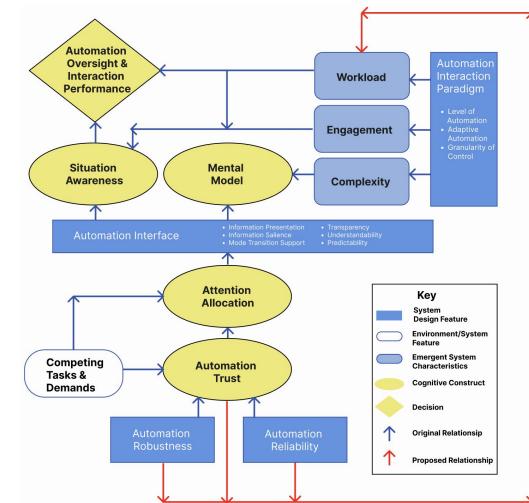



Figure 10: Automation Trust Thematic Results

Proposed HASO Diagram

Figure 11: Proposed HASO Diagram Source: Adapted from Endsley, 2017, p. 9

Complexity and Engagement

• Session 3 SUS = 59.05 (IQR=17.15) out of 100

imdc

- SUS 68-70 are considered to be usable (Bangor et al., 2008; Brooke, 1995)
- Session 3 Satisfaction M = 4.50 (IQR = 1.25) out of 7
- No significant differences over time or between novices and experts
- Interface acceptable but many suggestions offered for window size, layout, etc.
 - "If you could have some options about caption placement, yeah, that would be good" (Expert)
- Comparisons made to existing AI services
 - \circ "I have been taught how to use Amber Scripts" (Novice)

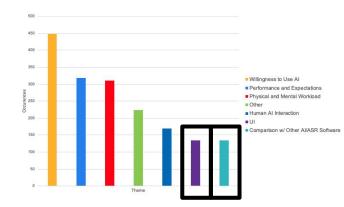
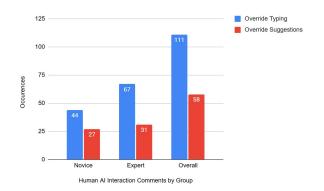



Figure 12: Complexity and Engagement Thematic Results

Automation Interaction Paradigm

- Significant correlation b/w negative Robustness and Reliability and Override Suggestions ($\tau(21) = 0.36$, p < 0.05)
 - Limited accuracy of Edit Suggestions made participants desire control over corrections

- Captioners prefer to assert more direct control
- Recommendation: PAVOCAT needs to be an Adaptive Automation (AA) with more Granularity of Control (GoC)
 - Allow captioners to decide when more control is necessary

- Small participant pool due to small workforce
- Technical set-up
 - Audio Degradation
 - Limited accuracy
 - PAVOCAT server on limited resources caused delays which exceeded 20 seconds at times
- Virtual set-up
 - Eye-tracking, a common measure of Attention, was disqualified as a result

Conclusions & Contributions

Design Recommendations

imdc

•

INCLUSIVE MEDIA & DESIGN CENTRE

	Add and remove		Level of	Monitoring	Generating	Selecting	Implementing
	Suggestions		automation		-	_	
	 Suggestions did 	Level 1	Manual control	Human	Human	Human	Human
	not synchronize	Level 2	Action support	Human/Computer	Human	Human	Human/Computer
	with identified	Level 3	Batch processing	Human/Computer	Human	Human	Computer
	errors	Level 4	Shared control	Human/Computer	Human/Computer	Human	Human/Computer
	Assert control over	Level 5	Decision support	Human/Computer	Human/Computer	Human	Computer
	Edit Suggestions	Level 6	Blended decision-making	Human/Computer	Human/Computer	Human/Computer	Computer
	and manually	Level 7	Rigid system	Human/Computer	Computer	Human	Computer
	type/respeak	Level 8	Automated decision-making	Human/Computer	Human/Computer	Computer	Computer
	Add ability to import	Level 9	Supervisory control	Human/Computer	Computer	Computer	Computer
	personal dictionary	Level 10	Full Automation	Computer	Computer	Computer	Computer
)	Level 4 LOA		<u> </u>			E.	

Figure 15: LOA Recommendation. Source: Adapted from https://www.functionize.com/blog/levels-of-automation-in-testing

INCLUSI

imdc

1. Theoretical contribution: Proposed addition of direct relationship between

Workload, Automation Trust, Robustness and Reliability to HASO Model

2. Methodological contribution: Used existing validated tools applied to HASO model

Conclusion

- Working in captioner-as-overseer mode
 - Seems to lower Mental Demand and Workload
 - Can benefit from Adaptive Automation with greater GoC than available in this study using PAVOCAT
 - No significant differences b/w novices and experts
 - Participant comments showed no clear distinction b/w novices vs experts
- Future Work
 - Longitudinal study with full length (e.g., 3-hour hockey game) broadcast content
 - Develop validated scales for Complexity and Engagement and use objective measurements for Attention Allocation

Acknowledgements

• The PAVOCAT Team

INCLUSIVE MEDIA & DESIGN CENTRE

- Christie Christelis, Project Manager
- Sander Fels-Leung, Development Manager
- Gabriella Hong, Senior UX Researcher
- Rishabh Sharma, Developer
- Mohammad Zaman, Developer
- Mohammed Pasha, Developer
- David Rose, Developer

• Funding

imdc

- Accessible Technology Program of Innovation, Science and Economic Development Canada
- Broadcast Accessibility Fund (BAF)
- Queen Elizabeth II Graduate Scholarship in Science and Technology (QEII-GSST)
- o Toronto Metropolitan University Graduate Scholarship

• Research Team

- Deborah I Fels, PhD., P.Eng.
- Patrick W Neumann, PhD
- Somang Nam, PhD

Accessibility Standards

This project has been made possible by

BROADCASTING ACCESSIBILITY FUND FONDS POUR L'ACCESSIBILITÉ DE LA RADIODIFFUSION

Thank you!

